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An orthonormal basis of solenoidal vector functions vanishing 
on a cylinder 
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Institute of Astronomy, Czechoslovak Academy of Sciences, 251 65 OndFejov, 
Czechoslovakia 

Received 22 November 1989 

Abstract. We derive expressions for vector fields wk,, , (r ,  cp, z )  defined inside a cylinder and 
satisfying the following conditions: (a )  V Wk,,!  = 0; (b) w k , , , ( R ,  cp, z )  = 0; (c) wA, , f ( r ,  cp, z +  
2) = w,,,( r, cp, z ) ,  where R and Z are constants; (d)  A W ~ , , ,  + h : , , , ~ , , , ,  = Vp,,,, for some scalar 
Pk,,,; (e)  -id,wk,, = kw,,,; (f) jw,,, = nw,,,, ,  where j = s - ia, is the generator of rotations 
about the axis (‘spin-torbital momentum’ operator); (g) j ~ , , , ~ l *  d V  = 1, where the integra- 
tion is over the cylinder of length 2 with radius R. These functions form an orthonormal 
basis complete on the space L, of vector functions satisfying (a) ,  (b) and (c). The basis 
can be used for studying, e.g., the stability of laminar pipe flow, or pipe turbulence. 

1. Introduction 

Despite its apparent simplicity, the question about stability of laminar pipe flow is 
still not satisfactorily solved. The reason is clear. Owing to the presence of the pressure 
term -Vp, the linearization of the Navier-Stokes equations 

d ~ / ’ a t  = -(U * V ) U +  v A o + f - V p =  Q ( u )  -Vp (1.1) 

v . u = o  (1 .a 
does not lead to the eigenvalue problem for an explicitly given linear operator. The 
same pressure term is a nuisance in many other hydrodynamical problems. In an 
attempt to get rid of it, we now examine its mathematical meaning. 

The incompressibility condition (1.2) together with the boundary conditions define 
a set of functions, 9, to which the solution o(x, t )  of (1.1) must belong at any time. 
Often the boundary conditions are expressed by a linear homogeneous equation, such 
as 

o = o  on the boundary (1.3) 

and then 9 is a linear functional space. If U(. , t )  E 9 for any t ,  then so must its time 
derivative and the right-hand side of (1.1). However, the apparent contributions to 
& / a t ,  collected in the operator Q ( u ) ,  do not in general belong to 9: the inertia term 
- ( U *  V)o satisfies (1.3) but not (1.2), the viscosity term vAu satisfies (1.2) but not 
(1.31, and the external volume force f may or may not satisfy anything. Therefore, to 
keep o in 9, we must subtract something from Q ( u ) ;  we subtract the gradient of a 
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scalar p to get the orthogonal projection of Q ( u )  on 9, as in figure 1. (With the 
functional scalar product defined by 

( u , u ) =  u * * u d V  I 
gradients are orthogonal to the space 9.) 

There are, however, easier ways of projecting a vector onto a space than finding 
the orthogonal component of Q ( o )  and then subtracting it. The most obvious way is 
to  have an orthonormal basis { w I }  in 9, expand Q ( u )  in this basis, and leave the rest, 
Q ( o )  - Z ( w f ,  Q ( u ) ) w , ,  to take care of itself instead of cancelling it explicitly with -Vp. 
In this paper we construct such a basis for the case when the boundary conditions 
used in the definition of 9 are those specific to the pipe flow: vanishing on a cylinder, 
and periodicity in the axial direction. (The union of all such bases with all positive 
periods in the axial direction is a basis for the infinitely long pipe flow.) Using this 
basis, the problem of the stability of the laminar pipe flow is considerably simplified 
and becomes tractable even in the non-axisymmetric case. The basis is also very 
convenient for treating turbulent pipe flows. As solenoidal vector fields are important 
in other areas of physics, e.g. in field theory, some applications of this basis may be 
found even outside hydrodynamics. 

V 
- Figure 1. Symbolic representation of the terms of 

(1.1) as vectors in a functional space. 9 

2. Non-normalized eigenfunctions 

The basis we seek consists of vector functions U /  ( r ,  cp, z )  satisfying the relations 

V . w l = o  (2.1) 

w f ( R 7 9 , z ) = 0  (2.2) 

W / ( T ,  cp, z + a  = w ( r ,  cp,z) (2.3) 
which define the space 9; here r, cp and z are the cylindrical coordinates, R is the 
radius and 2 the length of the pipe. An easy way of constructing orthonormal bases 
is to take eigenfunctions of suitable self-adjoint operators. We shall use three mutually 
commuting operators: the projection of the Laplacian on 9, the generator of rotations 
about the axis and the generator of shifts along the axis. 

As mentioned in section 1, the Laplacian is not defined on 9: in general, A w e  9 
even if w E %, since A w  need not satisfy the boundary condition (2.2). However, adding 
the gradient of a suitable scalar p ,  we get into 9 again (cf figure 1) .  Therefore the 
operator d, the projection of A on 9, is defined, for U, U E 9, by 

d u = u  if A u + V p = u  for some p 

and its eigenfunctions satisfy 

Awl + V p  = - h 2 w / .  (2.4) 
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Ladyzhenskaya (1969) proves that d is self-adjoint, and by partial integration we can 
easily see that it is negative definite; therefore we write its eigenvalues as - A 2 .  

The generator of shifts along the axis is, up to a constant factor, equal to 4 8 , .  The 
corresponding operator for rotations about the axis is not, however, L = -ia,, but 
J = L +  S, where the spin operator S is defined by its action on the unit vector fields 
e + ,  e- and e,: 

e, = 2-’”(e, * ie,) (2.5) 

as 

Se, = * e * .  

(Here e,, eq and e, are the orthogonal unit vectors of the cylindrical coordinate system.) 
From the obvious relations 

a,e, = e, a,e, = -e, 

we obtain 

Le,=-ia e = F e ,  

Je, = ( L +  S ) e ,  = O  
, *  

which expresses the rotation invariance of the vector fields e,, e, and their linear 
combinations e + ,  e - .  (In contrast, the ‘orbital’ operator L = 4 3 ,  gives Le, = Le, = 0 ,  
though the constant unit vectors e, and ey are by no means rotation invariant.) Therefore 
the eigenfunctions wI must satisfy 

-ia,w, = kw, (2.8) 

Jw, = nw,. (2.9) 

We shall express them in terms of the unit vectors e + ,  e- and e,: 

w = e+w-+ e-w++ e,w, = ( e + ,  e - ,  ez )  w+ (2.10) (1) 
(for simplicity we drop the subscript I where it is not necessary). From (2.7) it follows 
that 

J w = ( e + ,  e - ,  ez)(-i8,) w+ (1) 
therefore (2.8) and (2.9) can be rewritten as 

-ia,w, = kw, 

-ia,w, = nw, 
(Y = +, -, z. 

(2.11) 

(2.12) 

The solution is obviously 

w, (r,  cp, z )  = W, ( r )  eikr ei“. (2.13) 

As w is single-valued, n must be integer; the boundary condition (2.3) implies that k 
must be an integer multiple of 27rl.T. 
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The pressure p in the eigenvalue equation (2.4) must have the same sinusoidal 

(2.14) 

Applying the divergence operator on (2.4) and using (2,1), we find that p is a harmonic 
function: 

dependence on cp and z as w,: 

p (  r, 9, z )  = P (  r )  eika einc. 

We insert (2.14) into (2.15): 

a:+- a, -7- k2  P (  r )  = 0.  

The solution of this equation which is finite at the origin is 
constant x r"' if k = O  
constant x I ,  ( k r )  if k # O  

(2.15) 

(2.16) 

(2.17) 
(2.18) 

where I,, are the modified Bessel functions. 
As is natural in the cylindrical geometry, we shall frequently deal with the Bessel 

and modified Bessel functions; to avoid involved formulae, we introduce the operators 

D; = a, T- (2.19) 

and recall that the following relations hold (see, e.g., Abramowitz and Stegun (1965)): 

n 
r 

D ; l , ( k r )  = kZ,,*l(kr) (2.20) 

D:J,,(ur) = TuJ, , , (ar )  (2.21) 

0:-, D; = D ; + ~  D; = ef  +- a, - (2.22) 
1 n 2  
r r  

D:-,D,J,(ur) = -a*J,,(ur) 

D;-,D;l,, ( k r )  = k2Z, ( k r ) .  

(2.23) 

(2.24) 

(Equations (2.23) and (2.24) are the Bessel equations for J ,  and I,,.) Relations analogous 
to (2.20) but involving the solution (2.17) instead of (2.18) are 

Dir'"' = 2)nl Y(Tn)r"- '  (2.25) 

Now we express (2.4) in the coordinate system ( e + ,  e - ,  ea) .  The pressure (2.14) 
where Y is the Heaviside function: Y (  n )  = 1 if n 2 0, Y( n )  = 0 if n < 0. 

enters (2.4) through its gradient: 

= [2-"2(e+D; + e B : )  + eZ i k ] P (  r )  einQ eik2. (2.26) 
The Laplacian operator can be expressed in terms of three auxiliary operators, L = -ia, 
and 

(2.27) 
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as 

(2.28) 

If w, is a scalar function of the form (2.13), then 

D+D-w,  = D;-,D,w,  

D-D+w,  = D,+,D;w,. 

(2.29) 

(2.30) 

However, when applying these operators to a vector function, we must take into account 
the commutation relation 

L(e,w,) = e*(LT l )w,  

following from (2.6). Therefore 

D-D'(e+w-) = e+(D,D:- ,w-)  

D'D-(e-w+) = e-(D;D,+,w+) 

(2.31) 

(2.32) 

and the Laplacian acts in the following way: 

A( e+ w+ + e- w+ + e,w,) 

= e+(D,D;- ,  -k2)w-+e-(D:D,+,  -k2 )w++e , (D; - ,D , -k2 )w , .  (2.33) 

In solving (2.4) we distinguish four principal cases according to the value of k and n. 

Case 1 .  k>O, n > O .  According to (2.26), (2.18) and (2.20), we have 

v p  = a [ e + I , _ , ( k r ) + e - l , , + , ( k r ) + i J Z  e , ~ , ( k r ) ]  einP eikr (2.34) 

where a is a constant (proportional to k); inserting (2.33), (2.34) and (2.13) into (2.4), 
we obtain 

e + [ ( D ,  D:-, + A 2  - k 2 )  W-( r )  + CZI,-~( k r ) ]  

+e - [ (D;D,+ ,  + A 2 -  k2) W+(r)+aI , ,+ l (kr) ]  

+ e,[( D,,, D: + A 2  - k 2 )  W,( r ) + i d  aZ,( k r ) ]  = 0. 

The vectors e,, e-, e, are independent, therefore each square bracket must equal zero 
separately. As ( D,+, D: - k2)1, , (  k r )  = 0, a particular solution of the last of these 
equations is W, = (-iav?/A2)Z,,( k r ) ;  the general solution finite at r = 0 is 

where 7, is an arbitrary constant and 

a=-. (2.36) 

In the same way we find 
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The values of a, y * ,  yz and a are determined by the boundary conditions 

(2.39) 

and the incompressibility condition 

1 v W =  a,+- w,+-a w + a p ,  ( 'I) r p v  

=[2-1'2(D;+l W++D~-,W-)+ikW,]  einV eikz=O. (2.40) 

Inserting (2.35) and (2.37) into (2.40), we get 

ia 
k f i  Yz =- ( Y + -  7-1. (2.41) 

Suppose that a = 0; then, to satisfy (2.38), (2.39) and (2.41), either a or two of the 
three constants y+ ,  y - ,  yz must also be zero. It can easily be shown that both cases 
lead to the trivial solution w = 0. Therefore a # 0 and we may put a = A 2 .  Expressing 
y* and yz from (2.38) and (2.39) and inserting into (2.41), we find that a must be a 
non-zero solution of the equation 

(2.42) 

If a is a root of (2.42), then so is - a ;  however, the two roots lead to the same eigenvalue 
and eigenfunction. We can easily prove that (2.42) has no imaginary roots: let a be a 
solution of (2.42); then -a2  is an eigenvalue of the self-adjoint operator b-3:. If 
U E 9, then bo = Au+Vq for some scalar q and 

tc* * ( b - 8 : ) ~  d V =  U* * ( A - a t ) u  d V  I 
= - I (la,ul2+ la,ul*) d v. 

I 
Therefore i\-aI is negative definite, -a2  must be real and negative and a is real. We 
see that it is enough to consider real positive values of a. We come to the conclusion 
that for k > 0, n > 0 the eigenfunctions w = Wknl are given by 

(2.43) 

where a = a k n /  is the Ith positive root of (2.42); the corresponding eigenvalue is 

(2.44) - A 2  k,,/ - - -U:,, - k2 .  
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Case 2. k >  U, n =U. Up to (2.41) the reasoning is the same as in the previous case. 
Then we use the fact that J , ( x ) = - J , ( x )  and ZLl(x)=Il(x). This means, first, that 
(2.42) can be written as 

(2.45) 

second, that the coefficients at e+ and e- are equal in (2.43), and third, that the system 
(2.38), (2.39), (2.41) admits yet another solution: a = y, = 0, y+ =: y.-, when a is a 
positive root of 

J , ( a R )  = 0. (2.46) 

The second term in (2.45) is a constant (independent of a )  whose value lies between 
0 and f ;  the qualitative behaviour of the first term, J,(aR)/aRJ,(aR), is seen in 
figure 2. We see that the roots 11, 1 2 , .  . . of (2.45) and the roots j , ,  j,, . . . of (2.46) 
interweave in the order j ,  , I , ,  j , , 1 2 ,  . . . . Therefore the eigenfunctions in case 2 are 

Wko/ = N k o / (  e+ - e- )J , (  ar )  eikz for 1 odd (2.47) 

Jo(ar) - I,(kr) e, eikz for 1 even 
+ifi($$$ 1 1  

where a = akOl is the lth positive root of 

(2.48) 

(2.49) 

Note that e, - e- = iv? e, and e+ + e- = v? e,; therefore WkO/ is polarised in the direction 
of e, for I odd and in the ( e r ,  e,) plane for I even. 

Figure 2. Qualitative behaviour of J , ( a ) / a J , ( a ) .  
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Case 3. k=O, n>0.  Now, the pressure gradient is, according to (2.26), (2.17), and 
(2.2519 

vp = ae,rfl-' einQ. (2.50) 

We insert this and (2.33) into (2.4): 

e+[ ( D,D;-, + A ') W-( r )  + a ~ " - ~ ]  + e-( D;Di+, + A ') W+( r )  

+ e, ( D ,+ 0: + A ') W, = 0. (2.51) 

The general solution of this system is 

W+(r )  = Y+Jn+l (ar )  

W , ( r )  = YzJn(ar) 

(Y+ - y- )Jf l (ur)  = 0 

where a = A. The incompressibility condition (2.40) implies 

for all r, or 

y + = y - .  

The boundary conditions are 

CY 
y+J, , - , (aR) =7 R"-' 

y-J ,+i (aR)  = 0 

A 

y ,J , (aR)  = 0. 

(2.53) 

(2.54) 

(2.55) 

(2.56) 

(2.57) 

(2.58) 

(2.59) 

We add (2.57) and (2.58), taking into account (2.56) and the well known relation 
J,, - ( a R  ) + J,, + ( a R ) = (2 n / a R )J, ( a  R ) : 

a 
y+J , (aR)  =- R "  (2.60) 2 na 

(recall that A = a) .  One solution of the system (2.56)-(2.59) is CY = y+ = y-. = 0, yz # 0, 
J , , (aR) = 0,  the other is y, = 0, J , + , ( a R )  = 0 and 

aRfl 
2naJfl ( a R )  y+ = y- = # 0. (2.61) 

. .  Since the zeros of the functions J,, and J,,+I follow in the o rde r j , ,  ,jfl+l,l, J , , ~ ,  J ~ + ~ , ~ ,  . . . , 
the eigenfunctions are 

won/ = N~~~ ie,J,,(ar) e'"* for 1 odd (2.62) 

(2.63) 



An orthonormal basis of solenoidal vector functions 3491 

where a = aOnl is the lth positive root of 

J,(aR)J,,+,(aR) = O .  (2.64) 

The eigenvalue is -A&,, = - U ; , I .  

Case 4. k = Q ,  n =O. The pressure gradient is zero by (2.17), and (2.51) (with (Y = 0) 
is solved by 

W,( r) = f yiJl (or) (2.65) 

W,(r) = r,Jo(ar). (2.66) 

The boundary conditions are 

y*J , (aR)  = 0 (2.67) 

y,Jo(aR) = 0 (2.68) 

and the incompressibility condition (2.55) again implies (2.56). The solution of (2.56) 
and (2.67), (2.68) is either y+= y-=O, y, $0, Jo(aR)=O,  or y, =0, y+= y - f  0, 
JI( a R )  = 0. Therefore the eigenfunctions are 

(2.69) 
(2.70) 

where a = aoOl is the lth positive root of 

Jo( aR)J , (  a R )  = 0. (2.71) 

3. Discrete symmetries and the definition of wknl for negative k or n 

Let T, be the inversion against the plane Q = 0, cp = T, or the transformation cp + -p, 
e,+ -e,, e,+e,=eT, and let T, be the inversion against the plane z=O, or the 
transformation z + -z,  e, + - e z .  Evidently, these operators commute with d and with 
each other, T, anticommutes with a,, and T, with a,; the boundary and incompressibil- 
ity conditions are preserved by T, and T,. This means that if w is an eigenfunction 
of d, -id, and j with the eigenvalues - A 2 ,  k, n, then T,w and T,w are eigenfunctions 
of the same three operators with the eigenvalues, respectively, - A 2 ,  -k ,  n and - A 2 ,  
k, -n. The eigenvalues - A ~ , ,  with k = n = 0 are thus fourfold degenerate, those with 
k = 0, n # 0 or k # 0, n = 0 are twofold degenerate, and the rest are non-degenerate. 

Though the eigenfunctions with negative values of k or n can be found in the same 
way as those with positive k and n, it is convenient to define them by 

W - h i  = T z W k n i  (3.1) 

Wk-nl  = TvWknl (3.2) 
as this establishes a definite phase. (The phase of Wknl with k, n 5 0 is fixed by the 
requirement that N k n ,  > 0.) With this choice of phase, we always have W, real and W, 
purely imaginary. Since the operation of T,T, consists of exchanging e+ + e- = e$ and 
vice versa, e, + -e, and ei"* eikr + e-'", e-ikz , all the eigenfunctions become complex 
conjugate on the simultaneous inversion: 

T z T q W k n l  = w t n / *  (3.3) 
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If k = 0 ,  then Wknl is an eigenfunction of T,, 

TzWOnf = P & I / W O r l f .  (3.4) 

TqWkOl = P ~ O f W k O l *  (3.5) 

Since T: = 1 ,  Pinf  = & l ;  and the same is true for the parity with respect to T,, 

Inspecting the expressions for the eigenfunctions, we find that 

= ( - ly+]  

P P O ,  = ( -1) '  for k#O 

P i n f  = (-4, for all n. (3.8) 

From (3.3) we see that W Z , , ~  is equal to W - k - n / ,  with a possible change of sign. 
Therefore the basis contains with each function also its complex conjugate (up to the 
sign). 

Note that as k + 0, the transition of Wknl to wOnf is continuous if n # 0 and discon- 
tinuous if n = 0. Indeed, as I,,(x) - (x/2)"/n!  for n > 0 and small x, equation (2.42) 
divided by (kR)"-'/2"+'(n + l ) !  gives 

to the lowest order in kR, or 

J, , (aR)Jn, , (aR)  - constant x (kR)'.  (3.10) 

This equation approaches (2.64) or (2.71) as k + 0 ;  we express eitherJ,,(aR) orJ,,+,(aR) 
as constant x (kR)', insert into (2.43) or (2.47), (2.48) and find that 

lim Wknf = won/ n # 0. (3.11) 
k+O 

However, if n = 0, this argument fails, because I - l ( x )  - (x/2)'; and indeed, from 
(2.47), (2.48) and (2.69), (2.70) we can see that only the eigenvalues and eigenfunctions 
with odd I are continuous functions of k at k = 0. When 1 is even, the roots akOl of 
(2.49) tend to the positive zeros of J,(aR),  and not to the corresponding roots of (2.71); 
this explains the exchange of parity of WkO/ as k becomes zero (see (3.6), (3.7)). This 
somewhat counter-intuitive result is explained as follows. Equations (2.38), (2.39) and 
(2.41) are four homogeneous linear equations for four unknown variables y+, y - ,  yz,  
&and we seek their non-trivial solutions; equation (2.42) and its analogues are actually 
conditions for the determinant of the system to be zero. From (2.26) and (2.20) we 
see that a is proportional to k; rescaling the variable a, we can get a determinant 
which is not proportional to k if n # 0, while no such rescaling is possible if n = 0. 
Therefore, as k becomes zero, the rank of the matrix is decreased by one and this 
causes the jump in the eigenvalues and eigenfunctions. 

4. Normalization 

To find the normalization factors Nk,,,, we use the standard method of calculating 
norms of eigenfunctions of self-adjoint operators. Let S be a formally (i.e. without 
domain) defined operator, let a subspace 9 be defined by one or more linear 
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homogeneous equations H w  = 0, and S be self-adjoint on 9. When solving the eigen- 
problem of S on 9, we first look for all the solutions of the equation 

Swa = PuWa (4.1) 

where a denotes one or more parameters which label the eigenfunctions and eigen- 
values. Then we insert the general solution of (4.1) into the equation H w  = 0 and seek 
the set A of all the values of a for which 

Hw, = O  (4.2) 

has a non-trivial solution. Let a E A, b e A ;  then 
r r 

(pb-p . )J  w g - w , d V =  ( S w ; S . w , - w g . S w , ) d V .  J (4.3) 

The right-hand side of (4.3) is non-zero, but becomes zero as b + a, since S is self-adjoint 
on 9. Therefore the normalization integral is 

As a rule, the right-hand side reduces to a surface integral, which can, in systems like 
the cylindrical pipe, be easily evaluated. 

Now we apply this general procedure to our particular system. We fix the values 
of k and n and consider the equation 

d w, + ( a2 + k 2 )  w, = 0 or Awa + A;w, +V(A:q) == 0 (4.5) 

where A; = a 2 +  k 2  and q is a scalar function. So far w, does not satisfy the incompressi- 
bility and boundary conditions; however, we desire that, as the coefficients y* and yz 
and the parameter a assume the values required for fulfilling these conditions, the 
function w, becomes the unnormalized eigenfunction wkn, /  Nkn, defined in section 2. 
Therefore we choose, for k > 0, n > 0,  

(4.6) 

so that 

V q  = (e+Zn-,( kr )  + e-Zn+l( kr )  + i&eJn( k r ) )  einq eikz 

(comparing with (2.34) we see that p = aq = A 2 q ) .  By (4.5) and the Gauss theorem we 
have 

( A g - A ' , )  W d  * wb d V  

= I [ ( A", + A i V  q)* * wb - * ( A  W b  + A i V q ) ]  d v 

[ ( d , W d )  W b -  W $  ' d n W b + A ; q * W b , - A Z b q W a , ] d S  
= I, 

(4.7) 
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where C is the cylinder r = R, Os z s 2, a, denotes normal derivatives, d, = d,, and 
wan etc denote normal components, e.g. won = 2-”*( w,+ + w,-) .  

Now, in the expression for w,, 

wa = [ ( ?a+ Jn+ 1 ( a r )  - I n + 1  ( k r )  )e- + ( Y a -  Jn- 1 ( a r )  - I n  - 1 ( kr) )e+ 

+ifi(y,zJn(ar) - I n ( k r ) ) e , ]  eina eikr (4.8) 

we put 

(4.9) 

and for a we choose a positive root of (2.42). This implies that w, E 9: 

w,=O on C v . w , = o .  (4.10) 

In the analogous expression for wb we put 

b 
2 k  Ybr =- ( Y b +  - Yb-1. Yb* = ?a* 

Then we have V * wb = 0, but wb Z 0 on C, and (4.7) simplifies to 

(4.11) 

We use the fact that A i  - A; = b 2 -  a’, differentiate with respect to b and put b = a :  

(4.12) 

Since we have, e.g., 

the differentiation affects only 

N i i I =  Iw,/’dV 

br)  etc. After some manipulation, (4.12) yields 

I 

a 2 +  k2 
ak +- ( Y + J ; + ~  + Y-JL-1)In ] k Z 0 ,  n # O  (4.13) 

where the arguments of J and J’ are aknrR, those of I and I’ are kR, and y+,  y - ,  yz 
are given by (4.9) with a = aknl. 
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This result is derived for k # 0, m # 0 and, as can be seen from section 2, remains 
valid also for k # 0, n = 0 ,  1 even. However, in the latter case the expression (4.13) can 
be considerably simplified, using the identities y+ = - y- = ( k /  a ) y z ,  J b  = --Jl, I; = I,: 

(4.14) 

For k # 0, n = 0, 1 odd, the normalization integral can be easily deduced from (2.47) 

Ni;, = 2vR2ZJo(aR)’ k #  0, 1 odd. (4.15) 

Normalization integrals can be calculated equally simply in some other cases, as seen 
from (2.62), (2.69) and (2.70): 

1 odd (4.16) 

1 even. (4.17) 

The remaining case k = 0 ,  n # 0, I even, can be treated in the same manner as the 
case k Z 0 ,  n # 0, which we have described above. The result, after all possible 
simplifications, is 

and the well known expression for si J l (ar )2r  dr when Jl(a) =0:  

N-2 - 
N-2 ool - - ~ T R ~ Z J , , ( ~ R ) ~  

om/ - vR2zJn+,(aR)’ 

TZU2 R 2n f 2  

2 n 2  
n # 0, I even. N-2 - 

On/ - (4.18) 

We see that except for (4.13) the expressions for Nii ,  are compact and manifestly 
positive. I have not been successful in rewriting the right-hand side of (4.13) to an 
analogous form, though it seems probable that such a form exists. 

5. Generalization 

In the introduction we have mentioned the convenience of writing the Navier-Stokes 
equations in the basis of solenoidal vector functions satisfying the boundary conditions. 
We have found explicit expressions for the basis functions in the cylindrical geometry; 
owing to the high symmetry and well known properties of the cylindrical functions 
this was a relatively easy task. Of course, we often need to study the Navier-Stokes 
equations in other geometries; how can we construct the basis there? 

To see this, we extract what is general from the procedure described in section 2. 
First we find the general expression for pressure p :  as mentioned at (2 .19 ,  p must be 
a harmonic function. We find its gradient and insert it into (2.4): 

( A + A ~ ) W + C Y V ~  = o .  (5 .1)  
Let U be a general solution of the vector eigenvalue equation 

( A +  A ~ ) U  = o 
(if we are using constant unit vectors, such as e,, ey ,  e,, this equation reduces to three 
scalar eigenvalue equations of the same familiar type). Then the general solution of 
( 5 . 1 )  is 

CY 
w = U -7 vp. (5.3) A 
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We insert this expression into the boundary and incompressibility conditions and fix 
the eigenvalue by requiring that the resulting linear homogeneous equations for a: and 
the free coefficients yi of U have a non-trivial solution. Finally we find this solution 
and calculate the normalization integral by the method described in section 4. In some 
of the most frequently studied problems, such as plane Poisseuille flow, we can use 
as many symmetries as in the pipe flow problem, and the construction of the basis is 
then equally easy. Note that in the general procedure just described we solve well 
studied equations-the Laplace equation for p and (5 .2 )  for U ;  in many geometries 
the solution of these equations is already known. 

So far we were assuming that the boundary conditions are homogeneous, and 
consequently, that 9 is a linear space. If the condition U = 0 on the walls is not satisfied 
(moving walls or flow through boundary), then 9 is a linear manifold and not a linear 
space. However, shifting 9 by a constant vector, we have a space again. We subtract 
from u(x ,  t )  a constant vector field u o ( x )  satisfying the incompressibility and boundary 
conditions, and expand the rest in a basis found as described above: 

4x9 t ) =  vo(x)+C v r ( t ) w , ( x ) .  
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